
Alliance Window Systems' Glazing Options

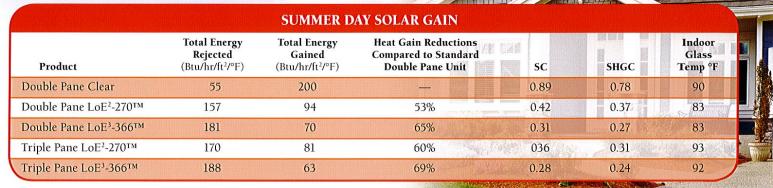
- A. Dual Insulated, both lites Clear, InnovativE® Spacer—Lowest Insulating Value
- B. Dual Insulated Cardinal 270 LoE²—2 layers of LoE Coating (side 2) with argon fill, InnovativE[®] Spacer—Twice the Insulating Value of Clear
- C. Dual Insulated Cardinal 366 LoE³—3 layers of LoE Coating (side 2) with argon fill, InnovativE® Spacer
- **D.** Triple Cardinal 270 LoE²—4 layers of LoE Coating (sides 2 & 5) with argon fill, XL Edge® Spacer
- E. Triple Cardinal 366 LoE³—6 layers of LoE Coating (sides 2 & 5) with argon fill, XL Edge® Spacer

The data clearly shows that the overall U-Factor and in turn heat loss are significantly reduced with Cardinal LoE^{2®} and LoE^{3™} products over clear IG units.

	Clear/Clear	LoE²-270™/Clear	LoE³-366™/Clear	Triple Pane LoE²-270™/Clear/ LoE²-270™	Triple Pane LoE³-366™/Clear/ LoE³366™
Center of Glass U-value (Btu/hr/ft²/°F)	0.46	0.25	0.24	0.21	0.20

This table shows how Cardinal LoE coatings and argon filling improve center of glass U-value.

Above figures are tested center of glass U-values used for comparison between options.


Complete window U-values will vary and include other factors such as air infiltration rates and frame construction.

Heat Transfer: Summer Heat Gain

Summer time heat gain is based on all three heat gain loads:

- Direct transmission of solar radiation
- Inward flowing fraction of absorbed solar radiation
- · Air-to-air heat gain from high outdoor temperatures

- 1) Double Pane Configuration: 3 mm glass with 13 mm 90% argon filled cavity. Coatings on #2 surface.
- 2) Triple Pane Configuration: 2.2 mm glass with 6 mm 90% argon filled cavity. Coatings on #2 and #5 surfaces.

Heat Transfer: Winter Heat Loss

Heat transfer across the cavity of insulating glass units occurs by two separate mechanisms:

- Thermal radiation from glass surface to glass surface
- · Conduction through the molecules of air

In a double-pane clear unit, over 60% of the total heat transfer is by the thermal radiation. Incorporating a low emissivity coating on one surface facing the air space blocks enough radiation transfer to reduce the total heat loss from 35 to 17 Btu/hr/ft². By adding the low emissivity coating, the heat loss by thermal radiation is now reduced to only 12% of the total heat transfer

WINTER NIGHT HEAT TRANSFER								
Product	Radiative Heat Loss (Btu/hr/ft²/°F)	Conductive Heat Loss (Btu/hr/ft²/°F)	Total Heat Loss (Btu/hr/ft²/°F)	Heat Gain Reductions Compared to Standard Double Pane Unit	Indoor Glass Temp °F			
Double Pane Clear	21	13	34	——————————————————————————————————————	44			
Double Pane LoE²-270™	2	16	18	47%	56			
Double Pane LoE³-366™	1	16	17	50%	56			
Triple Pane LoE²-270™	1	14	15	56%	58			
Triple Pane LoE³-366™	0	14	14	59%	58			

- 1) Double Pane Configuration: 3 mm glass with 13 mm 90% argon filled cavity. Coatings on #2 surface.
- 2) Triple Pane Configuration: 2.2 mm glass with 6 mm 90% argon filled cavity. Coatings on #2 and #5 surfaces.

